Bump Charts in XLCubed

So today’s blog is about adding Bump Charts in Excel using v8 XLCubed.

Initially a Bump Chart looks the same as a line chart – the difference is they plot the rank position rather than the actual value.

Let’s imagine that I sell a product in a marketplace with 10 other competitors. I may like to see how the rank position of my product and the competition changes over time to check if I’m gaining or losing market position. It’s a common scenario in pharma, where we have a good customer base.

You will usually want dates on the category axis so the trends are shown across time. The series then holds the items to be compared, in this case the products.

BBC1

 

 

 

 

 

 

Our example has been set up with Measures on Headers, Product Categories on Series and Date Calendar on Categories.  For more information on using Small Multiples in XLCubed please visit Small Multiple Charts.

The currently selected measure is Reseller Order Quantities (selected though the Measures slicer)

BBC2

 

 

 

 

for the eleven months prior to April 2008 (selected through the Date slicer)

 

BBC3

 

 

 

for a subset of products.

Looking at the bump chart you can see that I’ve selected Road Bikes and Mountain Bikes for easy comparison.  You can quickly see that the rank position for Road Bikes dropped quite dramatically from May 2007, picked up again in September before dropping again in November and rising in December through to February 2008.  The change for Mountain Bikes, on the other hand, was less dramatic, rising and falling slightly, steadying in February 2008 before dropping again the following month.

To create a bump chart just select Line – Bump as the Chart Type on your Small Multiple chart. The neat part is that all the rankings are worked out for you behind the scenes, without the need for lots of complex Excel gymnastics trying to work through the full result set month by month.

Excel heat maps made easy!

With the recent release of version 8 we’re going to blog about a number of the new features, starting with how to create a heat map in Excel.

Here’s a fairly large table showing sales for thirty six products across twenty six US states:

 v8B1

There’s a lot of data here but it’s not giving us any helpful information as the table is too large to see any pattern or comparison.

A heat map could be a useful way to give a quick visual picture of the spread of the sales volume. Let’s add a simple heat map, new in version 8 of XLCubed.

Select the data area in the table, and then from the XLCubed ribbon select the InCell-Chart group, and heat map:

v8B2

 

As we have already selected the data area to be charted this prompt is already showing the correct cell locations.

Choose the formula destination (where the formula controlling the chart will be located), and the Chart destination (where the top left cell in the chart area will be located).

We can now define the look of the heat map in the Chart Format dialog:

v8B3

 

 

We have set the low and high colours to define a blue colour gradient.

Outlying values could potentially skew the chart so you have the option to exclude these by setting minimum and maximum values.  Select the icon to use, squares in our case, and the number of steps or bands to split the range of values into.

We have pre-arranged the Excel cell sizes to be squares, and this is the resulting heat map:

v8B4

 

You can now quickly assimilate the spread of values in a glance, and note the higher sales volumes in Maine, Michigan and Missouri for Road, Touring and Mountain Bikes.

To alter the formatting of the chart simply double click on any one of the squares in the heat map, or on the chart formula to bring up the formatting dialog.

If you are not already a user of XLCubed you can get started with an evaluation of XLCubed by going to our registration page.

Some Excel BI myths debunked: #4 – no maps

#4: no Maps

The next commonly listed criticism of Excel BI is the lack of integrated geospatial mapping. While for some reports maps remain an irrelevance, for others they can make a huge difference, with targeted advertising or awareness campaigns being the most obvious. While you can now use mapping in Power View, for most corporate office users that isn’t an option yet. XLCubed brings both point and shape based mapping to any version of Excel.

The example report below mixes mapping with the Small Multiples concept. The approach means you can have multiple identical maps which vary only by the time period. This helps you see change over time regionally, and also to make comparisons between the direction and pace of change by region.

 Map3

You can zoom in and pan the maps as needed and they’ll stay in sync, and individual points on the map can also be set up as report selectors which update the rest of the report in sync.

So, mapping in Excel? – absolutely, right now and in any version.

 

Some Excel BI myths debunked #2: Inflexible Charting

#2: Inflexible Charting

Continuing our discussion of common criticisms of Excel focused BI, let’s take a look at charting.

“Excel charts are static, inflexible and you need to start from scratch if you want to change them.“

The flipside is that everyone knows how to use them, and in reality many charts in business reporting are in effect static – the numbers being charted change, but the chart layout and number of elements being charted stays the same.

Of course there are cases when charts can vary considerably with the data, or perhaps you would like to be able to drill into more detail on the chart, or to quickly display multiple charts split by one variable. Excel charting can’t handle those scenarios, but XLCubed caters for it through Small Multiples.  The example below depicts river water quality in different regions of England. It could be built in native Excel, but would be a painful and time consuming process. With XLCubed it’s a drag and drop process in our small multiple designer.

waterqualitysmalt

If the number of regions being reported changes, the number of charts being plotted will automatically stay in sync, and there is a direct data connection rather than having to maintain Excel ranges etc.

Sometimes with charting small is beautiful. Perhaps we just want the key numbers with a Sparkline alongside, or a bullet graph or bar chart to display actual to target. Native Excel 2010 and 2013 can handle the Sparkline, but not the ability to then drill the report and have the Sparklines extend, and there is also the issue of needing to bring the data itself into Excel before charting it.

XLCubed Grids can contain dynamic in-cell charts which build the charts as part of the query, and as such are drillable and remove the need to maintain a data range in Excel as shown below.

DrillIncell

So XLCubed brings the type of dynamic charting being described to Excel, and provides a simple web and mobile deployment option.

 

 

Bandlines in XLCubed

In early January this year Stephen Few introduced the concept of Bandlines. He identified a useful extension to Sparklines, making use of shaded or coloured horizontal bands to provide more information on the context of the trend line itself. See Stephen’s article on Bandlines and the thinking behind them for a detail description.

The Sparklines are ideal for showing individual trends in a small amount of screen real estate, and we use them extensively in dashboards, typically in a ‘visual table’. By definition Sparklines are small, and to make the trend easily readable, they are typically scaled individually so that each Sparkline uses the whole vertical axis. This means they do not give any impression of the scale of the numbers involved across different rows. It’s possible to use a common scale, and while sometimes that works more often it means many of the rows with smaller values are excessively flattened.

Bandlines address this by introducing horizontal shaded areas depicting the lower, middle and upper quartiles and the median represented by a line. The user can determine the context of the bands. The two most common examples would be plotting recent trend in the context of a longer period, or plotting individual rows in the context of the overall set of data being displayed.

We think Bandlines add real value, so hats off once again to Stephen, and we’re pleased to say that Bandlines are now available in the current version of XLCubed (see here for more detail).

The screenshots below show two examples, displayed in two colour schemes.

 

Bandlines3

The charts depict historic margin by store. The ‘Banding across all stores’ charts show the 30-day trend for the individual store, set in the quartile context of the data for all 11 stores in the table. We can see that for the Gilroy store in row 1, while the margin has varied, it remained in the top quartile when set against all stores for almost the whole period.

The ‘Banding by store, 90 days’ charts show the individual 30 day trend, set in the context of the previous 90 days for the individual store. This helps provide much more historical context, but the line itself still focuses on the more recent trend. Stockton is probably most noteworty here as across the 30 day period it has dropped from the top quartile into the 1st quartile across the whole 90 day period.

We’d love to hear your thoughts (and also which colour scheme works best!), we will also be adding Sparkstrips in the near future so watch this space.

 

 

 

 

Excel Pareto Charts the XLCubed way!

V7.2 of XLCubed is released soon and we thought we’d take the opportunity to run through one of the new features that you’ll be seeing, Pareto Charts.

The Pareto Principle is often referred to as the 80-20 rule, that 80% of outcomes are attributable to 20% of causes. They are named after Vilfredo Pareto who lived in Italy in the 19thcentury and observed that 80% of the land was owned by 20% of the people.   Pareto charts have both bar charts and a line graph where the bars represent individual values and the line represents the cumulative total.

So how do you use Pareto Charts from XLCubed?  Very simply, within a grid you right-click on the column header to access XLCubed’s right-click menu, Grid Charts and Add Pareto Analysis.

Take this simple grid showing Reseller Sales for Product Model Categories for Canadian cities:

Right-clicking on All Products to Add Pareto Analysis brings up this window:

Click OK to return to the workbook – you will see that we have a chart showing that the top 9 cities provide some 80% of the sales.

You could also include the rolling total and percentage in your Pareto Chart.

Notice that we now also have some extra columns on the grid showing the cumulative total of all sales, the sales percentage per category and the cumulative percentage.

 

 

So that’s Pareto Charts – in a nutshell, an easy to use graphical tool which ties directly into dynamic XLCubed grids.

Olympics Treemap

The 2012 London Olympics have now finished, and as a UK company we were pleased to see the games were such a success, and of course that team GB did so spectacularly well! We’re looking forward now to the Paralympics in a couple of weeks, and once the dust has settled there we’ll be shipping a new point release of XLCubed in September.

We’ll keep most of the changes under wraps for now, but one item which we are introducing is treemaps. The Olympic medal table gives us a nice opportunity to better understand the medal breakdown through the  new chart type. In XLCubed, treemaps can be produced directly from a cube or from a table held in Excel, as is the case here. The first example below shows the medals split by country and sport. The size of the rectangle depicts the total number of medals, and the colour shows the number of gold medals, the darker the colour the more gold. The numeric values list the total number of medals, then the number of golds. We can see the USA at the top, and that over half their medals came from swimming and athletics, with a bigger percentage of golds in the pool.

Any of the countries can be drilled into for a large view on their medal breakdown, not that we’re partisan of course… , but the view below is for Great Britain (GBR) where the particularly good showing by the cycling team stands out.

Taking a look at the same data split first by sport and then country, it’s easy to see the countries dominating the medals in each sport, and to delve into more detail by sport where required.


 Drilling into Athletics we can see that USA won most medals, and also most gold. Great Britain had just the 6 medals, but 4 were gold and hence the darker colour on their tile.

We’ll be making an interactive version of this available over the next few days.

 

 

Drive Excel Chart Min/Max from Range

How do I drive the min and max values of an axis from an Excel Range? This is one of the most commonly asked questions about Excel and with each new release it always amazes me that this feature hasn’t been added to the base product.

It’s a very common scenario to come across, you are building a line chart and it’s all looking ok until Excel suddenly decides to set the min value to 0, all of the detail is lost and you have gone from a nice detailed set of lines to a mishmash of colours a few pixels high.

There are some pretty sophisticated techniques Excel is using when working out what min & max to use, but sometimes we just want to set them to a particular value (normally anything other than 0!).

Here’s a pretty simple set of numbers and the resulting chart we get from Excel (just with all the defaults).

 

 

 

 

 

 

 

 

 

 

This all looks fine, but let’s change  “C” Monday’s value to 86, now look what happens:

 

 

 

 

 

 

 

 

Excel has applied its rules and decided that 0 is a good place to start the chart from, but in this case I lose a lot of the detail and end up with all the lines grouped together.

We could, of course, change the Axis min value to something a bit more sensible, so we’ll use the Format Axis option to set a minimum value of 84:

 

 

 

 

 

 

 

 

 

 

 

 

That looks better!

 

 

 

 

 

 

 

The base numbers had been entered manually, so being able to type a fixed value into the minimum axis is fine, but what if the numbers were coming from a cube or Sql database? Wouldn’t it be really helpful to be able to drive the minimum value from a range; I can change just about every other thing about the chart but after so many years and so many different version I still can’t do this.

Luckily for me (and our customers!) we already have an Excel addin so we can simply add the functionality to do this using one of the new formulae in 6.5:

XL3SetProperty( ObjectType, ObjectName, Property, Arg1, [Arg2],…, [Arg27] )

The formula to drive the chart axis from a range is simply:

=XL3SetProperty("Chart","Chart 1","YMin",$C$1)

Other options are:

PropertyDescriptionValue
“YMin” or “YMax”Sets the limits of the Y Axis.Numeric
“Y2Min” or “Y2Max”Sets the limits of the Y2 Axis.Numeric
“XMin” or “XMax”Sets the limits of the X Axis.Numeric
“X2Min” or “X2Max”Sets the limits of the X2 Axis.Numeric

Now finally we can build reports (and publish them to the Web), confident that regardless of the data or criteria selected  we aren’t going to end up with a line chart starting at 0 and bunching all the lines together.

This formula can also be used to modify various aspects of our own grids, slicers & small multiples based on the values of excel cells. The kind of things that we and our customers wanted to achieve were things like:

  • Move  dimensions between axes
  • Change the member selection types
  • Modify various grid properties based on different formulae

Lets look how the formula works to do some of these things:

=XL3SetProperty("Grid","My Grid","HierarchiesOnColumns","[Products]","[Regions]", $a$1)

Would move the Product, Region and whichever hierarchy is in $a$1 to the columns (I could use a slicer or drop down to update $a$1 to let the user switch between various hierarchies)

=XL3SetProperty("Grid","My Grid","RemoveEmptyRows",$b$1)

Would toggle whether to display rows without data based on the value of $b$1

If there are any aspects of Excel that you think would be useful to drive from a range, please let us know!

Small Multiples on River Quality

The phrase small multiple was popularised by Edward Tufte, and has become a generic term for a visual display using the same chart or graphic to display different slices of a data set. Their close positioning and shared scale make comparisons very easy and shared trends or outliers can be quickly spotted. Various other terms are also used to describe this charting approach, or specific aspects of it, including Trellis Charts, Lattice Charts, Grid Charts and Panel Charts.

The most common use case for small multiples is separate line charts to compare trend across a large number of varying elements. Placing them all within one chart would cause either a ‘spaghetti chart’ , or lots of occlusion as shown in the comparison below. Here we use a standard Excel line chart, and an XLCubed small multiple to chart the same data. Separating the charts while keeping a consistent axis scale makes for a much easier comparison than in the single chart.

We took a slightly different approach when using small multiples to take a look at differences in river water quality across regions of the UK. Our source data was not absolute numeric values, but 14 years of results categorised into four bandings (bad, poor, fair and good). We wanted to provide a ‘one-pager’ which gave a feel for the trend within each region, but also access to the annual breakdown of the different water qualities.

In the end we settled on a Small Multiple display of 100% stacked columns as shown below.

A percentage base seemed a sensible way to approach the data, as different regions will have differing numbers of rivers and of samples taken. Using this approach we’re able to see a comparison of the relative water quality rather than dealing in absolutes.

The user selects a geographic area of the country to view the regional breakdown within the selected area. The water quality for a particular year can be analysed by locating the region, and the specific year to see the percentage breakdown for each of the four categories.

The colouring of the 4 categories was chosen to aid ‘at a glance’ recognition of the overall water quality by region, and also of the trend. Dark blue signifies bad quality water (opaque), and light blue signifies good quality (think ‘you can see right through it….’).

So to read the display overall, or for trend:
• Dark colour signifies water quality problems.
• Light colour signifies good quality water.
• Reading left to right, increasing colour saturation shows declining quality over time.
• Reading left to right, decreasing colour saturation shows improving quality over time.
• Any region can be zoomed in on to see a larger chart and understand the breakdown in more detail.

Fairly quickly, and from just this one display we can draw a number of conclusions as below:
• Across the region, as a broad brush summary, water quality has improved since 1992.
• Doncaster has shown strong and steady improvement.
• Kingston upon Hull has the worst quality overall in the region, and varies significantly year on year.
• If you’re off for a swim in a Yorkshire river, Richmondshire looks a good bet!

We’ve designed a pre-set view in this case to work for the data in question, but the small multiple concept is also very powerful when interactively exploring data. A picture can tell a thousand words as they say – take a look at our youtube videos on small multiples: Video1 Video2

 

Something on the Horizon

We had an interesting scenario while helping a customer extend an existing Excel dashboard.

We had recently performed some work to solve some performance and design issues they had with their existing Analysis Services cubes. They now had more of their underlying data available and the ability to query longer periods without the performance hit (a year’s worth of data vs 28-days).

They wanted to make the most of this by charting changes in daily sales data over the previous 12 months, broken down by their four main business groups. Ideally the chart would become part of the existing Management Report, the difficulty was the lack of report real estate to add the extra information. This is something we have all come across previously and of course typically solved by using In-Cell charts.

Plotting the data on an Excel chart in the space available would give us this:

 

 

Converting to Sparklines gave us a slightly better view, but given the number of data items being plotted still not ideal.

 

 

Luckily our customer had recently upgraded to V6.1 of XLCubed so we were able to use one of our newest incell chart types: SparkHorizons. There is a good explanation of Horizon charts as part of the research paper: Sizing the Horizon: The Effects of Chart Size and Layering on the Graphical Perception of Time Series Visualizations and Stephen Few has covered them previously.

Essentially a line chart is split into colored bands – degrees of blue for positive numbers and degrees of red for negative numbers. In XLCubed this is 3 bands of each colour. The separation of the vertical scale means that horizon charts can be a lot more effective than standard sparklines where the scale of the numbers vary significantly, but you still want to retain a common scale view.

In this case plotting the same data as horizon charts makes things a lot clearer:

It now becomes quite clear when sales a trending up vs down. It’s also possible to flip the negative values so they appear on the same direction as the positive values:

 

We are always looking at ways of developing and extending XLCubed, SparkHorizons were added because they looked like they had the potential to be useful where the data suited them, so it was pleasing to be able to use them in a real-world situation.

It’s also worth mentioning that although, in this case the data came from Analysis Services Cubes, because they are available as Excel formula they can be used to plot any Excel data, here’s an example of the formula:

=XL3SparkHorizon(Sheet1!$V$2:$V$262,Sheet1!E10)

This will plot the data from Sheet1!$V$2:$V$262 as a SparkHorizon graph in Sheet1!E10.