Common Analysis Services Performance Issues

A quick blog post from the Services team here at XLCubed on some performance problems with SSAS that we’ve seen again recently. With the processing power and memory available it’s pretty easy to build a fast cube – both for query performance and processing time. It is also easy to be lax in cube design, ignore the warnings and best practice guidelines, and end up with a cube that’s looks concise, is neat and clever but performs terribly for end users.

We’ve come across a couple of examples of this at client sites in the last month, and there are some common issues that always seem to jump out – rectifying these normally has a very positive impact. The three most common culprits we see are:

Parent-Child dimensions – Parent-Child dimensions are nice and easy to build and use. However, as you can’t build aggregations that include a parent-child dimension it can make for a badly performing cube! Try to flatten dimensions out and evaluate exactly why a parent-child dimension is required and being used. They are not the only option..

Unary operators, Custom-roll ups – we’ve seen cases where these have been included in every dimension in a cube by default. If there isn’t a need for them – leave them out! If you can get around using a custom rollup or unary operator by some simple work in the ETL process it may be better to do that first.

If your query performance is bad – try removing all unary operators and custom rollups then re-test the cube. How’s the performance now? It should be significantly faster – evaluate and review the need for the unary operators and custom rollups and see if the same effect can be achieved differently (e.g. in the ETL layer)

Cache vs. Non-Cache Data – Basically is the cube recalculating and re-querying numbers over and over again or can it re-use results? Use profiler to check for cache or non-cache data when your queries are running. So many times we’ve seen all queries not using the cache because AS hasn’t been given enough available memory or volatile operators such as now() have been used in mdx calcs.

Resolving the issues above had a massive impact – reports taking up to 3 minutes to run were down to a few seconds, users could begin to use the application properly for the first time, however fixing the performance may be only part of the task. The cube of course needs to have been designed to meet the business requirements, but that’s another blog..

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.